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Supplementary Combinatorics Problems

&

Problem 1. Show that the number of ways in which

two people can divide 2n things of one kind, and 2n
of another kind, and 2n of a third kind, so that each
person gets 3n things is 3n? + 3n + 1.

Answer 1. All 7 ways for n = 1 with A, B, C be-
ing the 3 kinds of things, is shown in table [I, The

person 1 | person 2

ABC ABC
1 111 111
2 021 201
3 012 210
4 201 021
5 102 120
6 210 012
7 120 102

Table 1: All 7 ways for n = 1 in problem 1.

table provides the perspective to state the problem a
different way: In how many ways can you distribute
3n identical balls into 3 distinct bins so that no bin
contains more than 2n balls?

By way #2 of the twelve fold way, the number of ways
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to distribute 3n identical balls into 3 distinct bins is
3n+2

(")

The number of ways to distribute the balls so that at
least one bin has more than 2n balls is 3(";1). To get
this expression set aside 2n 4+ 1 of the 3n balls and
distribute the remaining n — 1 balls into the 3 bins in
("+1) ways. The remaining 2n + 1 balls can then be

2
put into one of the bins in 3 ways.

The number of ways to distribute the balls so that no
bin has more than 2n balls is then

3 2 1
(n; )—3(71; ):3n2+3n+1

Problem 2. Give a combinatorial proof of the fol-
lowing identity

> (=000

k=0

Answer 2. (”jnm) is equal to the number of ways to

distribute n indistinguishable objects into m + 1 dis-
tinguishable bins. Pick one of the bins. Over the set
of all distributions that bin will hold between 0 and n
objects. If it holds k objects then the remaining n — k
objects will be distributed into the other m bins in



("frj_”f*l) ways. Summing this over all the values of &

we get the identity.

Problem 3. Given a collection of n identical red

balls, n identical green balls and n identical blue balls,
in how many ways can the 3n balls be distributed into
3 bins such that each bin contains exactly n balls?

Answer 3.  We only need to count the number of

ways to distribute n balls into each of two bins since the
remaining n balls will then go into the remaining bin.
This is equivalent to asking for the number of ways to
distribute n identical balls into bins labeled Ry, G, By
and n identical balls into bins labeled Ry, G5, By such
that ‘R1| + |R2| S n, |G1| + |G2| S n, |Bl| + |BQ| S n.
The vertical bars around a bin label means the number
of balls in that bin. Without these restrictions each of
the distributions of n balls can be done in (";2) ways
so the total number of ways to distribute the 2n balls
without restrictions is (”;2) (”;2) From this we have
to subtract the number of distributions in which one of
the conditions |R;| + |Ra| > n, |G1| + |Ga| > n, |B:| +
| B3| > n holds. Note that since there are 2n balls only
one of the conditions can hold for a given distribution.
Suppose for example that we have |Ri| + |Re| =n + k
where kK = 1,,2,...,n. The rest of the n — k balls
can be distributed into the remaining 4 bins in ("7?3)
ways. Summing this over all values of k we get the

total number of ways that we can have |R;|+ |Ra| > n.



Using the combinatorial identity proven in the previous
problem we have

i (n—k—i—S) B <n+3)
— 3 4
To put this in the form of the identity change the sum-

mation index to k' = k — 1. So that we have (dropping
the prime on k)

— (n—l—k—l—S) (n—1—|—4) B (n—i—B)
B 4 S\ 4
k=0
The total number of ways to distribute 3n balls into 3
bins such that each bin contains exactly n balls is then

(n) n+2\[(n+2 5 n+3
a(n) = —

2 2 4
where the 3 multiplying (”+3) comes from the fact that
we 3 conditions that have to be accounted for. We can
also write the answer without the binomials as

1

a(n) = g(n +1)(n+2)(n* +3n +4)

Table [2[ shows the value of a(n) for n = 0,1,...,8

and table |3| shows the 21 ways to distribute the balls
{rrggbb} into 3 bins with 2 balls per bin.

Problem 4. In how many ways can 6 lilies, 7 roses

and 10 tulips be arranged in a row so that each lily is



1 2 3 4 5 6 7 8
6 21 55 120 231 406 666 1035

n|o0
1

Table 2: a(n) values.

Bin 1 | Bin 2 | Bin 3
T gg bb
T gb gb
T bb gg
rg rg bb
rg rb gb
rg gb rb
rg bb rg
rb rg ghb
rb rb gg
rb gg rb
rb gb rg
gg IT bb
gg rb rb
gg bb T
gb T gb
gb rg rb
gb rb rg
gb gb T
bb T gg
bb rg rg
bb gg T

Table 3: The 21 ways to distribute the balls {rrggbb}
into 3 bins with 2 balls per bin.



between a rose and a tulip, and there are no roses and
tulips next to each other?

Answer 4. Let L represent a lily, and R and T repre-

sent a group of roses and tulips respectively. There are
then 2 possible arrangements: RLTLRLTLRLTLR,
TLRLTLRLTLRLT. Call these arrangements 1 and
2 respectively. In arrangement 1 there are 4 R groups
and 3 T groups. The ways to divide 7 roses into 4
groups with at least one in each group is (g) The
ways to divide 10 tulips into 3 groups with at least
one in each group is (g) The total number of ways to
create arrangement 1 is then (g) (g) In arrangement
2 there are 3 R groups and 4 7' groups. The ways to
divide 7 roses into 3 groups with at least one in each
group are (g) The number of ways to divide 10 tulips
into 4 groups with at least one in each group is (g)
The total number of ways to create arrangement 3 is

(g) (g) The total number of arrangements is then
6\ /9 6\ /9
=1
(5)(2)+ () () ~ o0

Problem 5. Show that (Z) 1s a maximum when k =

|n/2], i.e. when k is equal to the nearest integer to
n/2.

Answer 5. If (Z) were a continuous function we would



take the derivative with respect to k set it equal to zero
and solve for k. We can do basically the same thing
here by calculating the central difference.

()Gl
% {(/H 1)!(:— k-1 (k- 1)!(2'— k+ 1)!}

Now factor out (Z) from the two terms and set the

result equal to zero.

1/n n—k:_ k —0
o2\k) |k+1 n—k+1|

So we must have

n—k_ k
E+1 n—k+1

Solving for k we get k =n/2.

Another way to solve this problem is to use Stirling’s
approximation Inn! ~ nlnn—n. Then we can find the
maximum of In (") which is the same as the maximum

n k
of (k)
n
In (k’) =Inn! —Ink! —In(n—k)!
Using Stirling’s approximation this becomes

In <Z> ~nlnn—n—klnk+k—(n—Fk)ln(n—k)+n—=k



Now take the derivative with respect to k and set the
result equal to zero.

ln(n—k)—lnkzln(n;k> =0

Solving for k gives k = n/2.
Problem 6. Show that the product of binomial co-
nq N9 o Ng
ky ) \ k2 kq
where ny +ng+---+ng=nand by +ko+---+k; =k,
is a maximum when the k; values are equal to

efficients

n

Answer 6. The only reasonable way to solve this

problem is to use Stirling’s approximation for the log of
a factorial, as we did in the previous problem. Taking
the log of the binomial products we have

Z Inn;! —Ink;! —In(n; — k;)!]

)

Using Stirling’s approximation this can be simplified
to



Now we want to maximize H subject to the constraint

that
Z ki =k

We will do this using the method of Lagrange multi-
pliers. First we construct the function

L:H+)\<zi:ki—k:>

Now we have the two equations

‘;—/;:Zki—k:o

2

oL OH

Ok; Ok,
These two equations can be solved for k;. From the
expression for H we have

ok U\ K

The previous equation then becomes

1 (A T A —
n( % )+ 0

which we can write as

+A=0

n; — k; -
P




Solving this for k; we have

o l4e A

7

Summing this equation over ¢ we get

So that

n
l+e?=—
+e 3

Substituting this into the equation for k; we get

n

k'i:
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Combinatorial Physics Problems

In quantum mechanics, particles (electrons, protons,
atoms, etc.) that are bound by a potential energy func-
tion will have discrete energy levels. A particle in a box
where the walls are infinite potential energy barriers is
probably the simplest example. In the one dimensional
case the particle is confined to a one dimensional re-
gion of some fixed length. The energy levels of the
particle are limited to the values E, = an? where a is
a constant and n =1,2,3....

Another example is the energy levels of an electron in a
hydrogen atom. The electron is limited to the energies
E, = —13.6/n*> where n = 1,2,3.... A system where
the energy levels are equally spaced is the quantum
harmonic oscillator which corresponds to the classical
system of a particle oscillating on the end of a spring.
Here the energy levels have the form E,, = an+0b where
a and b are constants and n =0,1,2,....

So in general a particle in a quantum system will have
one of a set of discrete energy levels E,,. At each energy
level there will be a finite set of states the particle can
be in. These states may correspond for example to
allowed angular momenta for an electron bound to an
atom. For the sake of the following discussion, you can
picture the particles as being organized into boxes on
a set of shelves. Each shelf is an energy level and the

11



boxes on the shelf are the states. In general each shelf
may have a different number of boxes.

: eee| o
3

‘ X0 e |eoe
. X0

e e |eoe| 0@

Figure 1: The distribution of particles in a quantum
system is combinatorially equivalent to distributing
balls into boxes on a shelf. The shelves correspond
to energy levels and the boxes correspond to quantum
states.

The properties of a system composed of a very large
number of particles is determined by the way the parti-
cles distribute themselves among the energy levels and
states. That distribution is determined by the total
energy of the system and by the type of particles. In
quantum mechanics there are two types of particles
called bosons and fermions with very different rules for
how they may occupy states.

Bosons have no restrictions on how many of them may
occupy the same state simultaneously. Any number
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of them may bunch up together in the same state.
Fermions on the other hand are more standoffish. Only
one fermion may occupy a given state at a time. These
properties of bosons and fermions determine the to-
tal number of ways they can be distributed among the
states.

Problem 7. An energy level in a quantum system

has n; particles. The level has g; states that can be
occupied by the particles. If the particles are bosons
how many ways can they be distributed among the
states?

Answer 7. Bosons are identical, indistinguishable

particles and any number of them may occupy a given
state. So combinatorially this is equivalent to find-
ing the number of ways that n; identical balls can be
placed into g; distinguishable boxes. From the twelve
fold way the number of distributions is

(nj+gj—1>
g9;—1

Problem 8. In the previous problem let the particles

be fermions instead of bosons.

Answer 8. Fermions are also identical and indistin-

guishable particles but only one of them may occupy a
given state at a time. For a distribution to be possible



the number of fermions must be less than or equal to
the number of states, n; < g;. The number of distri-
butions is the number of ways to choose n; out of the
g; states for occupation by particles. That number is

()

Problem 9. Suppose we have a system with a fixed

number of bosons, N, and a fixed energy, U. The
system has integer valued energy levels, ¢; = j for
j=0,1,2,... and each energy level has only one state.
If N =6 and U = 5 how many ways can the particles
be distributed among the energy levels?

Answer 9. We can answer this question by first look-

ing at the number of ways the energy can be parti-
tioned. The partitions of 5 are

—_

C{1,1,1,1,1}

[\

C{1,1,1,2}
. {1,1,3}

. {1,2,2}
{14

. {2,3)

S Ot s W
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7. {5}

There are 7 partitions. Partition 1 corresponds to hav-
ing 5 particles with energy equal to 1 and 1 particle
with energy equal to 0. Partition 2 corresponds to 3
particles with energy equal to 1, 1 particle with energy
equal to 2, and 2 particles with energy equal to 0. Par-
tition 3 corresponds to 2 particles with energy equal
to 1, 1 particle with energy equal to 3, and 3 parti-
cles with energy equal to 0. And so on for the other
partitions.

The particles are bosons so they are indistinguishable
and any number of them can be in the same state.
There is therefore only one way to arrange the particles
for each partition. The answer is then simply equal to
the number of partitions which in this case is 7.

Problem 10. Repeat the previous problem for the

case of distinguishable classical particles.

Answer 10. We still have 7 partitions of the energy

as in the previous problem but now there is more than
one way to arrange the particles for each partition. For
example in partition 1 there are 6 ways one of the par-
ticles can have energy equal to 0. In general for a given
partition if there are NV particles with energy j then



the number of ways to arrange the particles is

N!
No!N -

So the number of ways the particles can be arranged
in each of the partitions is

1L & =6

2. 5o =60
3. 520 =60
4. 5= =60
5. oo =30
6. o =30
7.5 =6

Summing the number of arrangements for each parti-
tion we get 252 for the total number of arrangements.

Problem 11. Repeat the previous problem for the

case of fermions.

Answer 11. The number of partitions of the energy

does not change. Since the particles are fermions and
there is only one state for each energy level only one
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particle can occupy a given level. If we have 6 particles
then none of the partitions meet this requirement so the
number of arrangements is 0. Such a system cannot be
populated with 6 fermions.

Problem 12. If in the previous problem we have 2

fermions instead of 6 how many ways can they be ar-
ranged?

Answer 12.  With only 2 fermions partitions 5, 6 and

7 can be occupied. Each of the partitions can be occu-
pied in one way so the total number of arrangements
is 3.
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